Enzymatic-reaction induced production of polydopamine nanoparticles for sensitive and visual sensing of urea.
نویسندگان
چکیده
Dopamine (DA) has attracted extensive interest due to not only its important roles in physiological and pathological processes, but also its prospective applications in chemistry and materials science. In this work, we demonstrate that the urease catalytic reaction is an effective new approach for a better control of DA polymerization to polydopamine nanoparticles (PDA NPs). And we further develop an original and novel method for sensitive and visual sensing of urea through spectroscopic or particle size analysis. The detection is based on DA polymerization to PDA NPs that can be controlled by the reaction rate of urease-catalyzed urea hydrolysis, correspondingly, correlated with the varied urea concentration. The composition, morphologies and sizes of the resulting PDA NPs are characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and dynamic light scattering (DLS) spectroscopy, respectively. Under optimal reaction conditions, the UV absorbance of DA polymerization at 400 nm shows a good response towards urea detection over a range of 1 × 10(-7) to 1 × 10(-3) M with a limit of detection (LOD) of 100 nM (S/N = 3). Moreover, the sizes of the resulting PDA NPs increase linearly with urea concentration from 5 × 10(-6) to 1 × 10(-4) M. The newly developed assay allows the enzymatic-reaction driven PDA NPs to be used for quantitative detection of urea with many advantages, e.g. simple preparation, easy visualization, good sensitivity, wide detection range and low interference, in particular, no complex sensor-fabrication required.
منابع مشابه
Design of a Fluorescent Sensor Based on the Polydopamine Nanoparticles for Detection of Gallic Acid
Background: Gallic acid (GA) is one of the polyphenolic compounds with antioxidant, antimicrobial and radical scavenging activities, which plays a main role in human health against cancer and cardiovascular diseases. GA concentration can be quantitatively measured in food, medicinal plants and body fluids. Materials and Methods: In this study, MnO2 nanosheets were prepared by reducing potassium...
متن کاملHigh Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells
Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...
متن کاملTurn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles.
Dopamine is the principle biomarker for diseases such as schizophrenia, Huntington's, and Parkinson's, and the need is urgent for rapid and sensitive detection methods for diagnosis and monitoring of such diseases. In this Article, we report a turn-on fluorescent method for rapid dopamine sensing which is based on monitoring the intrinsic fluorescence of in situ synthesized polydopamine nanopar...
متن کاملFormation of fluorescent polydopamine dots from hydroxyl radical-induced degradation of polydopamine nanoparticles.
This study describes the synthesis of fluorescent polydopamine dots (PDs) through hydroxyl radical-induced degradation of polydopamine nanoparticles. The decomposition of polydopamine nanoparticles to fluorescent PDs was confirmed using transmission electron microscopy and dark-field microscopy. The analysis of PDs by using laser desorption/ionization time-of-flight mass spectrometry revealed t...
متن کاملImmobilization of Lipase on Silver Nanoparticles via Adhesive Polydopamine for Biodiesel Production
Biodiesel production technology is competitive in terms of low cost and alternative source of energy which should be not only sustainable but also environmentally friendly. Designing of the lipase immobilization for biodiesel production has a remarkable impact and is still challenging. In this work, biodiesel production from soybean oil was enhanced and facilitated by using a novel biocatalyst ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Analyst
دوره 140 2 شماره
صفحات -
تاریخ انتشار 2015